These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pregnancy-enhanced Ca2+ responses to ATP in uterine artery endothelial cells is due to greater capacitative Ca2+ entry rather than altered receptor coupling.
    Author: Gifford SM, Yi FX, Bird IM.
    Journal: J Endocrinol; 2006 Aug; 190(2):373-84. PubMed ID: 16899570.
    Abstract:
    Uterine artery endothelial cells (UAEC) derived from pregnant (P-UAEC) and nonpregnant (NP-UAEC) ewes retain pregnancy-specific differences in cell signaling as well as vasodilator production through passage 4. In particular, when P- and NP-UAEC are stimulated with ATP over a 2.5 min recording period, they exhibit similar initial transient peaks in the intracellular free Ca(2+) concentration ([Ca(2+)](i)), but the P-UAEC show a heightened sustained phase. In order to establish whether this was due to an altered subclass of purinergic receptor (P2), both the dose dependency of [Ca(2+)](i) responses to ADP and UTP and the profile of purinergic receptor expression are determined in NP- and P-UAEC. Our findings indicate that while several isoforms of P2X and P2Y receptors are present, it is P2Y2 that is responsible for the ATP-induced initial transient peak in both cell types. We also characterized several key components of the ATP-induced Ca(2+) signaling cascade, including the inositol 1,4,5-trisphosphate receptor and G-proteins, but could not confirm any pregnancy-specific variation in the protein expression that correlated with pregnancy-specific differences in prolonged Ca(2+) signaling. We thus investigated whether such a difference may be inherent to the cell itself rather than specific to the purinergic receptor-signaling pathway. Using thapsigargin (Tg), we were able to demonstrate that the initial Tg-sensitive intracellular pool of Ca(2+)is nearly identical with the capacity in both cell types, but the P-UAEC is nonetheless capable of greater capacitative Ca(2+) entry (CCE) than NP-UAEC. Furthermore, CCE induced by Tg could be dramatically inhibited by 2-aminoethoxydiphenyl borate, suggesting a role for store-operated channels in the ATP-induced [Ca(2+)](i) response. We conclude that changes at the level of capacitative entry mechanisms rather than switching of receptor subtype or coupling to phospholipase C underlies pregnancy adaptation of UAEC at the level of Ca(2+)signaling.
    [Abstract] [Full Text] [Related] [New Search]