These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein splicing in cis and in trans.
    Author: Saleh L, Perler FB.
    Journal: Chem Rec; 2006; 6(4):183-93. PubMed ID: 16900466.
    Abstract:
    Intein-mediated protein splicing is a self-catalytic process in which the intervening intein sequence is removed from a precursor protein and the flanking extein segments are ligated with a native peptide bond. Splice junction proximal residues and internal residues within the intein direct these reactions. The identity of these residues varies in each intein, as groups of related residues populate conserved motifs. Although the basics of the four-step protein splicing pathway are known, mechanistic details are still unknown. Structural and kinetic analyses are beginning to shed some light. Several structures were reported for precursor proteins with mutations in catalytic residues, which stabilize the precursors for crystallographic study. Progress is being made despite limitations inherent in using mutated precursors. However, no uniform mechanism has emerged. Kinetic parameters were determined using conditional trans-splicing (splicing of split precursor fragments after intein reassembly). Several groups concluded that the rate of the initial acyl rearrangement step is rapid and Asn cyclization (step 3) is slow, suggesting that this latter step is rate limiting. Understanding the protein splicing pathway has allowed scientists to harness inteins for numerous applications.
    [Abstract] [Full Text] [Related] [New Search]