These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of Slc26a6 deletion on apical Cl-/HCO3- exchanger activity and cAMP-stimulated bicarbonate secretion in pancreatic duct.
    Author: Ishiguro H, Namkung W, Yamamoto A, Wang Z, Worrell RT, Xu J, Lee MG, Soleimani M.
    Journal: Am J Physiol Gastrointest Liver Physiol; 2007 Jan; 292(1):G447-55. PubMed ID: 16901991.
    Abstract:
    The role of Slc26a6 (PAT1) on apical Cl-/HCO3- exchange and bicarbonate secretion in pancreatic duct cells was investigated using Slc26a6 null and wild-type (WT) mice. Apical Cl-/HCO3- exchange activity was measured with the pH-sensitive dye BCECF in microperfused interlobular ducts. The HCO3(-)-influx mode of apical [Cl-]i/[HCO3-]o exchange (where brackets denote concentration and subscripts i and o denote intra- and extracellular, respectively) was dramatically upregulated in Slc26a6 null mice (P < 0.01 vs. WT), whereas the HCO3(-)-efflux mode of apical [Cl-]o/[HCO3-]i exchange was decreased in Slc26a6 null mice (P < 0.05 vs. WT), suggesting the unidirectionality of the Slc26a6-mediated HCO3- transport. Fluid secretory rate in interlobular ducts were comparable in WT and Slc26a6 null mice (P > 0.05). In addition, when pancreatic juice was collected from whole animal in basal and secretin-stimulated conditions, neither juice volume nor its pH showed differences between WT and Slc26a6 null mice. Semiquantitative RT-PCR demonstrated more than fivefold upregulation in Slc26a3 (DRA) expression in Slc26a6 knockout pancreas. In conclusion, these results point to the role of Slc26a6 in HCO3- efflux at the apical membrane and also suggest the presence of a robust Slc26a3 compensatory upregulation, which can replace the function of Slc26a6 in pancreatic ducts.
    [Abstract] [Full Text] [Related] [New Search]