These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structure and magnetic properties of a non-heme diiron complex singly bridged by a hydroxo group.
    Author: Jullien J, Juhász G, Mialane P, Dumas E, Mayer CR, Marrot J, Rivière E, Bominaar EL, Münck E, Sécheresse F.
    Journal: Inorg Chem; 2006 Aug 21; 45(17):6922-7. PubMed ID: 16903750.
    Abstract:
    The synthesis of the first singly bridged non-heme diiron complex with a mu-hydroxo bridging ligand, [{(salten)Fe}2(OH)][B(C6H5)4].(CH3CN)x.(H2O)y (1) [H2salten = 4-azaheptane-1,7-bis(salicylideneiminate)], is reported. The complex has been characterized with X-ray crystallography, FTIR, magnetic susceptibility measurements, and Mössbauer spectroscopy. The data have been compared with the results of DFT calculations on both 1 and a model with an unsupported mu-oxo bridge (2) to verify the formulation of the complex as a mu-hydroxo-bridged species. The X-ray structure [Fe-O(H) = 1.997(1) A and Fe-O(H)-Fe = 159 degrees ] is consistent with the DFT-optimized geometry of 1 [Fe-O(H) = 2.02 A and Fe-O(H)-Fe = 151 degrees ]; the Fe-O(H) distance in 1 is about 0.2 A longer than the Fe-O separations in the optimized geometry of 2 (1.84 A) and in the crystallographic structures of diiron(III) compounds with unsupported mu-oxo bridges (1.77-1.81 A). The formulation of 1 as a hydroxo-bridged compound is also supported by the presence of an O-H stretch band in the FTIR spectrum of the complex. The magnetic susceptibility measurements of 1 reveal antiferromagnetic exchange (J = 42 cm(-1) and H(ex) = JS(1).S(2)). Nearly the same J value is obtained by analyzing the temperature dependence of the Mössbauer spectra (J = 43 cm(-1); other parameters: delta = 0.49 mm s(-1), DeltaE(Q) = -0.97 mm s(-1), and eta = 0.45 at 4.2 K). The experimental J values and Mössbauer parameters agree very well with those obtained from DFT calculations for the mu-hydroxo-bridged compound (J = 46 cm(-1), delta = 0.48 mm s(-1), DeltaE(Q) = -1.09 mm s(-1), and eta = 0.35). The exchange coupling constant in 1 is distinctly different from the value J approximately 200 cm(-1) calculated for the optimized mu-oxo-bridged species, 2. The increased exchange-coupling in 2 arises primarily from a decrease in the Fe-O bond length.
    [Abstract] [Full Text] [Related] [New Search]