These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of pulse rate on thresholds and loudness of biphasic and alternating monophasic pulse trains in electrical hearing. Author: van Wieringen A, Carlyon RP, Macherey O, Wouters J. Journal: Hear Res; 2006 Oct; 220(1-2):49-60. PubMed ID: 16904278. Abstract: Detection thresholds and most comfortable loudnesses (MCLs) were determined as a function of pulse rate for standard biphasic pulse trains (BP) and for anodic and cathodic monophasic phases alternating at fixed intervals (ALT-m). Three different phase durations were examined. With a 100-micros phase duration, thresholds for the ALT-m stimulus were substantially (up to 12 dB) lower than for the BP stimuli at relatively low rates (200 pps), but were similar to the BP thresholds at high rates (1000 pps). Thresholds for BP pulse trains decreased monotonically with increasing rate, whereas the function for ALT-m waveforms was non-monotonic with a maximum between 400 and 1000 pps. These trends occurred for three different cochlear implant devices, different electrode configurations, and, generally, for different phase durations (10.8, 25, and 100 micros/phase). However, at the shorter phase durations, thresholds remained lower for the ALT-m stimulus, even at 5000 pps, the highest rate studied. Dynamic ranges of the BP pulse trains increased with increasing rate, irrespective of the phase duration under test, but for the ALT-m stimuli this was only true at the shorter phase durations tested. At a 100-mus phase duration, dynamic ranges for the ALT-m waveforms did not differ significantly as a function of rate. The results confirm previous reports that delaying charge recovery, in this case by switching from a BP to an ALT-m wave shape, can substantially reduce thresholds [Van Wieringen, A., Carlyon, R.P., Laneau, J., Wouters, J., 2005. Effects of waveform shape on human sensitivity to electrical stimulation of the inner ear. Hear. Res. 200, 73-86; Carlyon, R.P., van Wieringen, A., Deeks, J.M., Long, C.J., Lyzenga, J, Wouters, J., 2005. Effect of inter-phase gap on the sensitivity of cochlear implant users to electrical stimulation. Hear. Res. 205, 210-224]. However, at high pulse rates, this advantage only occurs at short phase durations. In addition, we show that the complex interaction between the effects of pulse shape, rate, and phase duration on thresholds can be captured by the simple linear model described by Carlyon et al.[Abstract] [Full Text] [Related] [New Search]