These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Overcoming the radioresistance of prostate cancer cells with a novel Bcl-2 inhibitor.
    Author: An J, Chervin AS, Nie A, Ducoff HS, Huang Z.
    Journal: Oncogene; 2007 Feb 01; 26(5):652-61. PubMed ID: 16909121.
    Abstract:
    Bcl-2 overexpression is an important mechanism underlying the aggressive behavior of prostate cancer cells and their resistance to radio- or chemotherapy. HA14-1, a recently discovered organic Bcl-2 inhibitor, potently induces apoptosis in various human cancer cells. Sequential exposure of radioresistant LNCaP (wild-type (wt) p53), LNCaP/Bcl-2 (wt p53) and PC3 (mutant p53) prostate cancer cells to a minimally cytotoxic concentration of 10 microM HA14-1 for 1 h followed by 1-6 Gy gamma radiation, resulted in a highly synergistic (combination index <1.0) induction of cell death as determined by an apoptosis assay at 72 h, and a clonogenicity assay at 12 days, after the initial treatment. The reverse treatment sequence did not cause a synergistic induction of cell death. When compared to individual treatments, cell death induced by the combined treatment was associated with dramatically increased reactive oxygen species (ROS) generation, c-Jun N-terminal kinase (JNK) activation, Bcl-2 phosphorylation, cytochrome c release, caspase-3 activation and DNA fragmentation. Exposure to either 200 microg/ml of the antioxidant alpha-tocopherol or 10 microM JNK inhibitor SP600125 before the combined treatment resulted in decreased activation of JNK and caspase-3 as well as decreased DNA fragmentation. However, treatment with the pancaspase inhibitor carbobenzoxyl-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone before the combined treatment inhibited apoptosis without affecting JNK activation, and this inhibitory effect was enhanced in the presence of alpha-tocopherol or SP600125. Taken together, our results indicate that HA14-1 potently sensitizes radioresistant LNCaP and PC3 cells to gamma radiation, regardless of the status of p53. ROS and JNK are important early signals that trigger both caspase-dependent and -independent cell death pathways and contribute to the apoptotic synergy induced by the combined treatments.
    [Abstract] [Full Text] [Related] [New Search]