These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Divergent signaling pathways mediate induction of Na,K-ATPase alpha1 and beta1 subunit gene transcription by low potassium.
    Author: Wang G, Kawakami K, Gick G.
    Journal: Mol Cell Biochem; 2007 Jan; 294(1-2):73-85. PubMed ID: 16909306.
    Abstract:
    Prolonged inhibition of Na,K-ATPase enzymatic activity by exposure of a variety of mammalian cells to low external K+ yields a subsequent adaptive up-regulation of Na,K-ATPase expression. The aim of this study was to examine the intracellular signal transduction system that is responsible for mediating increased Na,K-ATPase subunit gene expression in primary cultures of neonatal rat cardiac myocytes. In this work, we show long-term inhibition of Na,K-ATPase function with 0.6 mM K+ resulted in hypertrophy of cardiac myocytes and augmentation of Na,K-ATPase alpha1 and beta1 subunit gene expression. Transient transfection experiments in neonatal rat cardiac myocytes demonstrated that low K+ induction of alpha1 and beta1 gene transcription was dependent on intracellular Ca2+ and activation of calcineurin. Based on effects of pharmacological inhibitors, protein kinase A (PKA), extracellular signal-regulated kinase 1/2 (ERK1/2) and histone deacetylase were found to be unique downstream components in the low K+ signal transduction pathway leading to increased alpha1 subunit promoter activity. Similarly, low K+-induced beta1 subunit gene transcription was dependent on activation of protein kinase C (PKC), c-Jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). These findings indicate that persistent inhibition of Na,K-ATPase activity with low external K+ activates overlapping and Na,K-ATPase subunit gene-specific signaling pathways in cardiac myocytes.
    [Abstract] [Full Text] [Related] [New Search]