These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of muscarinic-coupled phosphoinositide hydrolysis by N-methyl-D-aspartate is dependent on depolarization via channel activation. Author: Morrisett RA, Chow CC, Sakaguchi T, Shin C, McNamara JO. Journal: J Neurochem; 1990 May; 54(5):1517-25. PubMed ID: 1691275. Abstract: The intent of this work was to elucidate the mechanism by which N-methyl-D-aspartate (NMDA) receptor agonists inhibit a second messenger system, namely, the stimulation of phosphoinositide (PI) hydrolysis activated by muscarinic cholinergic receptor agonists. NMDA inhibited cholinergic stimulation of PI hydrolysis in a dose- and time-dependent manner. NMDA exerts this effect indirectly through channel activation, because both MK-801 and N-[1-(2-thienyl)cyclohexyl]piperidine (TCP) prevented this action. Prevention of the NMDA effect by removal of sodium, but not calcium, from the incubation buffer suggested that depolarization may be the responsible mechanism. Depolarization alone proved sufficient to inhibit cholinergic activation of PI hydrolysis, because both veratridine and an elevated extracellular potassium level inhibited cholinergic stimulation of PI hydrolysis. The effect of NMDA appeared to require sodium flux through NMDA channels rather than through voltage-dependent sodium channels, because tetrodotoxin failed to inhibit the effect of NMDA. In correlative electrophysiologic experiments, NMDA profoundly inhibited evoked excitatory postsynaptic potentials and population action potentials of CA1 neurons, an effect almost certainly due to depolarization. The dose and time course of the electrophysiologic effects correlated well with the biochemical effects. Taken together, the data support the assertion that NMDA receptor activation inhibits PI hydrolysis by depolarization mediated by sodium flux through NMDA channels.[Abstract] [Full Text] [Related] [New Search]