These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A computational study on the kinetics and mechanism for the unimolecular decomposition of o-nitrotoluene.
    Author: Chen SC, Xu SC, Diau E, Lin MC.
    Journal: J Phys Chem A; 2006 Aug 24; 110(33):10130-4. PubMed ID: 16913688.
    Abstract:
    The kinetics and mechanism for the unimolecular decomposition of o-nitrotoluene (o-CH(3)C(6)H(4)NO(2)) have been studied computationally at the G2M(RCC, MP2)//B3LYP/6-311G(d, p) level of theory in conjunction with rate constant predictions with RRKM and TST calculations. The results of the calculations reveal 10 decomposition channels for o-nitrotoluene and its six isomeric intermediates, among them four channels give major products: CH(3)C(6)H(4) + NO(2), C(6)H(4)C(H)ON (anthranil) + H(2)O, CH(3)C(6)H(4)O (o-methyl phenoxy) + NO, and C(6)H(4)C(H(2))NO + OH. The predicted rate constants in the 500-2000 K temperature range indicate that anthranil production, taking place initially by intramolecular H-abstraction from the CH(3) group by NO(2) followed by five-membered ring formation and dehydration, dominates at temperatures below 1000 K, whereas NO(2) elimination becomes predominant above 1100 K and CH(3)C(6)H(4)O formation by the nitro-nitrite isomerization/decomposition process accounts for only 5-11% of the total product yield in the middle temperature range 800-1300 K. The branching ratio for CH(2)C(6)H(4)NO formation by the decomposition process of CH(2)C(6)H(4)N(O)OH is negligible. The predicted high-pressure-limit rate constants with the rate expression of 4.10 x 10(17) exp[-37000/T] s(-1) for the NO(2) elimination channel and 9.09 x 10(12) exp[-25800/T] s(-1) for the H(2)O elimination channel generally agree reasonably with available experimental data. The predicted high-pressure-limit rate constants for the NO and OH elimination channels are represented as 1.49 x 10(14) exp[-30000/T] and 1.31 x 10(15) exp[-38000/T] s(-1), respectively.
    [Abstract] [Full Text] [Related] [New Search]