These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Helicobacter pylori-induced downregulation of the secretory leukocyte protease inhibitor (SLPI) in gastric epithelial cell lines and its functional relevance for H. pylori-mediated diseases. Author: Wex T, Treiber G, Venerito M, Leodolter A, Peitz U, Kuester D, Hritz I, Krueger S, Roessner A, Malfertheiner P. Journal: Biol Chem; 2006 Jul; 387(7):893-901. PubMed ID: 16913839. Abstract: The secretory leukocyte protease inhibitor (SLPI) exerts antiproteolytic activity towards serine proteases, as well as anti-microbial and anti-inflammatory effects. To investigate its role in H. pylori-mediated diseases, SLPI expression was analyzed by RT-PCR, ELISA and immunohistochemistry in clinical samples and gastric tumor cell lines. Determination of the mucosal SLPI levels in 126 patients confirmed the previously reported downregulation of SLPI in H. pylori-infected patients. The lower SLPI levels in antral biopsies of H. pylori-positive subjects were associated with a 30-fold increase (p<0.01) in neutrophil elastase activity, and a significant negative correlation was demonstrated for both parameters (R=-0.63, p=0.0002). Eradication of the bacterium in a long-term study (5-7 years) led to a recovery of mucosal SLPI expression. In vitro experiments using four gastric tumor cell lines (AGS, MKN-28, MKN-45, NCI-N87) generally confirmed the clinical findings. While the co-incubation of these cell lines with H. pylori resulted in lower or unchanged SLPI protein levels, the corresponding SLPI mRNA amounts were upregulated by up to five-fold (p=0.006) in all cell lines. Taken together, these results indicate that the reduction in antral SLPI levels in H. pylori-infected subjects has a functional relevance for gastric mucosa and the H. pylori-induced decrease in SLPI is primarily regulated at the posttranslational level.[Abstract] [Full Text] [Related] [New Search]