These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of ApC, a sea anemone toxin, on sodium currents of mammalian neurons. Author: Salceda E, Garateix A, Aneiros A, Salazar H, López O, Soto E. Journal: Brain Res; 2006 Sep 19; 1110(1):136-43. PubMed ID: 16914123. Abstract: We have characterized the actions of ApC, a sea anemone polypeptide toxin isolated from Anthopleura elegantissima, on neuronal sodium currents (I(Na)) using current and voltage-clamp techniques. Neurons of the dorsal root ganglia of Wistar rats (P5-9) in primary culture were used for this study. These cells express tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) I(Na). In current-clamp experiments, application of ApC increased the average duration of the action potential. Under voltage-clamp conditions, the main effect of ApC was a concentration-dependent increase in the TTX-S I(Na) inactivation time course. No significant effects were observed on the activation time course or on the current peak-amplitude. ApC also produced a hyperpolarizing shift in the voltage at which 50% of the channels are inactivated and caused a significant decrease in the voltage dependence of Na+ channel inactivation. No effects were observed on TTX-R I(Na). Our results suggest that ApC slows the conformational changes required for fast inactivation of the mammalian Na+ channels in a form similar to other site-3 toxins, although with a greater potency than ATX-II, a highly homologous anemone toxin.[Abstract] [Full Text] [Related] [New Search]