These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hypohydration and prior heat stress exacerbates decreases in cerebral blood flow velocity during standing.
    Author: Carter R, Cheuvront SN, Vernieuw CR, Sawka MN.
    Journal: J Appl Physiol (1985); 2006 Dec; 101(6):1744-50. PubMed ID: 16916922.
    Abstract:
    Hypohydration is associated with orthostatic intolerance; however, little is known about cerebrovascular mechanisms responsible. This study examined whether hypohydration reduces cerebral blood flow velocity (CBFV) in response to an orthostatic challenge. Eight subjects completed four orthostatic challenges (temperate conditions) twice before (Pre-EU and Pre-Hyp) and following recovery from passive heat stress ( approximately 3 h at 45 degrees C, 50% relative humidity, 1 m/s air speed) with (Post-EU) or without (Post-Hyp) fluid replacement of sweat losses (-3% body mass loss). Measurements included CBFV, mean arterial pressure (MAP), heart rate (HR), end-tidal CO(2), and core and skin temperatures. Test sessions included being seated (20 min) followed by standing (60 s) then resitting (60 s) with metronomic breathing (15 breaths/min). CBFV and MAP responses to standing were similar during Pre-EU and Pre-Hyp. Standing Post-Hyp exacerbated the magnitude (-28.0 +/- 1.4% of baseline) and duration (9.0 +/- 1.6 s) of CBFV reductions and increased cerebrovascular resistance (CVR) compared with Post-EU (-20.0 +/- 2.1% and 6.6 +/- 0.9 s). Standing Post-EU also resulted in a reduction in CBFV, and a smaller decrease in CVR compared with Pre-EU. MAP decreases were similar for Post-EU (-18 +/- 4 mmHg) and Post-Hyp (-21 +/- 5 mmHg) from seated to standing. These data demonstrate that despite similar MAP decreases, hypohydration, and prior heat stress (despite apparent recovery) produce greater CBFV reduction when standing. These observations suggest that hypohydration and prior heat stress are associated with greater reductions in CBFV with greater CVR, which likely contribute to orthostatic intolerance.
    [Abstract] [Full Text] [Related] [New Search]