These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion.
    Author: Hoffmann P, Eder R, Boeld TJ, Doser K, Piseshka B, Andreesen R, Edinger M.
    Journal: Blood; 2006 Dec 15; 108(13):4260-7. PubMed ID: 16917003.
    Abstract:
    Thymus-derived CD4+ CD25+ regulatory T cells suppress autoreactive CD4+ and CD8+ T cells and thereby protect from autoimmunity. In animal models, adoptive transfer of CD4+ CD25+ regulatory T cells has been shown to prevent and even cure autoimmune diseases as well as pathogenic alloresponses after solid organ and stem-cell transplantations. We recently described methods for the efficient in vitro expansion of human regulatory T cells for clinical applications. We now demonstrate that only CCR7- and L-selectin (CD62L)-coexpressing cells within expanded CD4+ CD25high T cells maintain phenotypic and functional characteristics of regulatory T cells. Further analysis revealed that these cells originate from CD45RA+ naive cells within the CD4+ CD25high T-cell compartment, as only this subpopulation homogeneously expressed CD62L, CCR7, cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), and forkhead box P3 (FOXP3), produced no inflammatory cytokines and maintained robust suppressive activity after expansion. In contrast, cell lines derived from CD45RA- memory-type CD4+ CD25high T cells lost expression of lymph node homing receptors CCR7 and CD62L, contained interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) as well as IL-10-secreting cells, showed only moderate suppression and, most importantly, did not maintain FOXP3 expression. Based on these unexpected findings, we suggest that isolation and expansion of CD45RA+ naive CD4+ CD25high T cells is the best strategy for adoptive regulatory T (Treg)-cell therapies.
    [Abstract] [Full Text] [Related] [New Search]