These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of the pyridoindole antioxidant stobadine on the cardiac Na(+),K(+)-ATPase in rats with streptozotocin-induced diabetes.
    Author: Vlkovicová J, Javorková V, Stefek M, Kysel'ová Z, Gajdosíková A, Vrbjar N.
    Journal: Gen Physiol Biophys; 2006 Jun; 25(2):111-24. PubMed ID: 16917126.
    Abstract:
    In the present study we examined the effect of dietary supplementation with the pyridoindole antioxidant stobadine on functional properties of the cardiac Na(+),K(+)-ATPase in diabetic rats. Diabetes lasting sixteen weeks which was induced by a single i.v. dose of streptozotocin (55 mg x kg(-1)) was followed by decrease in the enzyme activity. Evaluation of kinetic parameters revealed a statistically significant decrease in the maximum velocity (Vmax) (32% for ATP-activation, 33% for Na(+)-activation), indicating a diabetes-induced diminution of the number of active enzyme molecules in cardiac sarcolemma. The ATP-binding properties of the enzyme were not affected by diabetes as suggested by statistically insignificant changes in the value of Michaelis-Menten constant, K(M (ATP)). On the other hand, the affinity to sodium decreased as suggested by 54% increase in the K(M (Na+)) value. This impairment in the affinity of the Na(+)-binding site together with decreased number of active Na(+),K(+)-ATPase molecules are probably responsible for the deteriorated enzyme function in hearts of diabetic animals. Administration of stobadine to diabetic rats dramatically improved the function of cardiac Na(+),K(+)-ATPase with regard to Na(+)-handling, as documented by statistically significant elevation of Vmax by 66 and 47% decrease in K(M (Na+)). Our data suggest that stobadine may prevent the diabetes-induced deterioration of cardiac Na(+),K(+)-ATPase, thus enabling to preserve its normal function in regulation of intracellular homeostasis of Na(+) and K(+) ions.
    [Abstract] [Full Text] [Related] [New Search]