These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The axolotl limb: a model for bone development, regeneration and fracture healing. Author: Hutchison C, Pilote M, Roy S. Journal: Bone; 2007 Jan; 40(1):45-56. PubMed ID: 16920050. Abstract: Among vertebrates, urodele amphibians (e.g., axolotls) have the unique ability to perfectly regenerate complex body parts after amputation. The limb has been the most widely studied due to the presence of three defined axes and its ease of manipulation. Hence, the limb has been chosen as a model to study the process of skeletogenesis during axolotl development, regeneration and to analyze this animal's ability to heal bone fractures. Extensive studies have allowed researchers to gain some knowledge of the mechanisms controlling growth and pattern formation in regenerating and developing limbs, offering an insight into how vertebrates are able to regenerate tissues. In this study, we report the cloning and characterization of two axolotl genes; Cbfa-1, a transcription factor that controls the remodeling of cartilage into bone and PTHrP, known for its involvement in the differentiation and maturation of chondrocytes. Whole-mount in situ hybridization and immunohistochemistry results show that Cbfa-1, PTHrP and type II collagen are expressed during limb development and regeneration. These genes are expressed during specific stages of limb development and regeneration which are consistent with the appearance of skeletal elements. The expression pattern for Cbfa-1 in late limb development was similar to the expression pattern found in the late stages of limb regeneration (i.e. re-development phase) and it did not overlap with the expression of type II collagen. It has been reported that the molecular mechanisms involved in the re-development phase of limb regeneration are a recapitulation of those used in developing limbs; therefore the detection of Cbfa-1 expression during regeneration supports this assertion. Conversely, PTHrP expression pattern was different during limb development and regeneration, by its intensity and by the localization of the signal. Finally, despite its unsurpassed abilities to regenerate, we tested whether the axolotl was able to regenerate non-union bone fractures. We show that while the axolotl is able to heal a non-stabilized union fracture, like other vertebrates, it is incapable of healing a bone gap of critical dimension. These results suggest that the axolotl does not use the regeneration process to repair bone fractures.[Abstract] [Full Text] [Related] [New Search]