These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The violation of the Stokes-Einstein relation in supercooled water. Author: Chen SH, Mallamace F, Mou CY, Broccio M, Corsaro C, Faraone A, Liu L. Journal: Proc Natl Acad Sci U S A; 2006 Aug 29; 103(35):12974-8. PubMed ID: 16920792. Abstract: By confining water in nanopores, so narrow that the liquid cannot freeze, it is possible to explore its properties well below its homogeneous nucleation temperature T(H) approximately equals 235 K. In particular, the dynamical parameters of water can be measured down to 180 K, approaching the suggested glass transition temperature T(g) approximately equals 165 K. Here we present experimental evidence, obtained from Nuclear Magnetic Resonance and Quasi-Elastic Neutron Scattering spectroscopies, of a well defined decoupling of transport properties (the self-diffusion coefficient and the average translational relaxation time), which implies the breakdown of the Stokes-Einstein relation. We further show that such a non-monotonic decoupling reflects the characteristics of the recently observed dynamic crossover, at approximately 225 K, between the two dynamical behaviors known as fragile and strong, which is a consequence of a change in the hydrogen bond structure of liquid water.[Abstract] [Full Text] [Related] [New Search]