These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of cell adhesion molecule nectin-3 in spermatid development.
    Author: Inagaki M, Irie K, Ishizaki H, Tanaka-Okamoto M, Miyoshi J, Takai Y.
    Journal: Genes Cells; 2006 Sep; 11(9):1125-32. PubMed ID: 16923130.
    Abstract:
    Seminiferous epithelia of the testes contain two types of intercellular junctions: Sertoli-Sertoli junctions and Sertoli-spermatid junctions. The former junctions are equipped with tight and adherens junctions while the latter junctions are not. Ca2+ -independent immunoglobulin-like cell-cell adhesion molecules, nectin-2 and nectin-3, asymmetrically localize at the Sertoli cell side and at the spermatid side of Sertoli-spermatid junctions, respectively. They heterophilically trans-interact to make contact between the two cells. Nectin-2(-/-) mice have shown male-specific infertility, disrupted Sertoli-spermatid junctions and morphologically impaired spermatid development. Here we report testicular phenotypes of nectin-3(-/-) mice exhibiting male-specific infertility. Nectin-3(-/-) mice had defects in the later steps of sperm morphogenesis including distorted nuclei and abnormal distribution of mitochondria, as well as in localization of nectin-2 at the Sertoli-spermatid junctions. Transplantation of wild-type spermatogenic stem cells into the nectin-3(-/-) testes partially rescued these defects in sperm morphogenesis. These results indicate that the heterophilic trans-interaction between nectin-2 and nectin-3 is essential for the formation and maintenance of Sertoli-spermatid junctions that plays a critical role in spermatid development.
    [Abstract] [Full Text] [Related] [New Search]