These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Acetylcholine neuroprotection against glutamate-induced excitotoxicity in adult pig retinal ganglion cells is partially mediated through alpha4 nAChRs. Author: Thompson SA, Smith O, Linn DM, Linn CL. Journal: Exp Eye Res; 2006 Nov; 83(5):1135-45. PubMed ID: 16928373. Abstract: In the mammalian retina, excess glutamate release has been shown to be involved in retinal ganglion cell (RGC) death associated with various diseases. Recent studies have determined that activation of alpha7 nicotinic acetylcholine receptors (nAChRs) partially protect isolated RGCs from glutamate-induced excitotoxicity. In this study, we further classify the types of nAChRs involved in neuroprotection against glutamate-induced excitotoxicity using isolated adult pig RGCs. Cells were isolated with a modified two-step immunoselective panning technique designed to isolate RGCs from other retinal neurons. Once isolated, nAChR subunits were identified using a combination of pharmacological and immunocytochemical techniques. In cell culture experiments, a variety of alpha4 nAChR specific agonists were found to have a partial neuroprotective against glutamate-induced excitotoxicity. This neuroprotection was abolished in the presence of the alpha4 nAChR antagonist, dihydro-beta-erythroidine (DHbetaE). Immunocytochemical results localized several nAChR subunits on isolated adult pig RGCs; in particular alpha4, alpha7 and beta2 nAChR subunits. Large RGCs exclusively immunostained with antibodies against alpha7 nAChR subunits whereas alpha4 and beta2 subunits exclusively immunostained only small RGCs. Double label experiments provided evidence that alpha4 and beta2 subunits co-localize on small RGCs. Knowledge of the receptor subtypes responsible for neuroprotection may lead to treatments associated with glutamate-induced excitotoxicity.[Abstract] [Full Text] [Related] [New Search]