These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Visual spatial summation in macaque geniculocortical afferents.
    Author: Sceniak MP, Chatterjee S, Callaway EM.
    Journal: J Neurophysiol; 2006 Dec; 96(6):3474-84. PubMed ID: 16928793.
    Abstract:
    The spatial summation properties of visual signals were analyzed for geniculocortical afferents in the primary visual cortex (V1) of anesthetized paralyzed macaque monkeys. Afferent input responses were recorded extracellularly during cortical inactivation through superfusion of the cortex with muscimol, allowing investigation of lateral geniculate nucleus of the thalamus (LGN) cell properties in the absence of cortical feedback. Responses from afferent inputs were classified as magno-, parvo-, or koniocellular based on anatomical organization within the cortex, established through histological reconstructions, and visual response wavelength sensitivity. More than 80% of afferents showed strong surround suppression [suppression index (SI) >0.5] and 14% showed negligible surround suppression (SI < 0.2). Afferent responses with weak and strong surround suppression were found throughout cortical input layers 4C and 4A. High-contrast estimates of the spatial extent of the classical surround were similar to the nonclassical surround. The classical and nonclassical surrounds were, on average, 1.5-fold larger than the excitatory center. Unlike neurons within V1, the spatial extent of excitatory summation for geniculocortical afferents was contrast invariant. Nonclassical surround suppression showed slight contrast dependency with estimates larger (20%) at lower contrasts and stronger at higher contrasts (13%). Surround suppression is inherent in cortical input responses and likely derives from lateral inhibition in either the LGN or retina. Although surround suppression within afferent responses increases slightly with contrast, the spatial spread of excitation remains fixed with contrast. This argues for distinct mechanisms of action for contrast-dependent modulation in cortical and subcortical responses.
    [Abstract] [Full Text] [Related] [New Search]