These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Indium flux synthesis of RE4Ni2InGe4 (RE = Dy, Ho, Er, and Tm): an ordered quaternary variation on the binary phase Mg5Si6. Author: Salvador JR, Kanatzidis MG. Journal: Inorg Chem; 2006 Sep 04; 45(18):7091-9. PubMed ID: 16933908. Abstract: The quaternary compounds RE4Ni2InGe4 (RE = Dy, Ho, Er, and Tm) were obtained as large single crystals in high yields from reactions run in liquid In. The title compounds crystallize in the monoclinic C2/m space group with the Mg(5)Si(6) structure type with lattice parameters a = 15.420(2) A, b = 4.2224(7) A, c = 7.0191(11) A, and beta = 108.589(2) degrees for Dy4Ni2InGe4, a = 15.373(4) A, b = 4.2101(9) A, c = 6.9935(15) A, and beta = 108.600(3) degrees for Ho4Ni2InGe4, a = 15.334(7) A, b = 4.1937(19) A, c = 6.975(3) A, and beta =108.472(7) degrees for Er4Ni2InGe4, and a = 15.253(2) A, b = 4.1747(6) A, c = 6.9460(9) A, and beta = 108.535(2) degrees for Tm4Ni2InGe4. RE4Ni2InGe4 formed in liquid In from a melt that was rich in the rare-earth component. These compounds are polar intermetallic phases with a cationic rare-earth substructure embedded in a transition metal and main group matrix. The rare-earth atoms form a highly condensed network, leading to interatomic distances that are similar to those found in the elemental lanthanides themselves. The Dy and Ho analogues display two maxima in the susceptibility, suggesting antiferromagnetic ordering behavior and an accompanying spin reorientation. The Er analogue shows only one maximum in the susceptibility, and no magnetic ordering was observed for the Tm compound down to 2 K.[Abstract] [Full Text] [Related] [New Search]