These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Involvement of calcium-mediated apoptotic signals in H2O2-induced MIN6N8a cell death.
    Author: Choi SE, Min SH, Shin HC, Kim HE, Jung MW, Kang Y.
    Journal: Eur J Pharmacol; 2006 Oct 10; 547(1-3):1-9. PubMed ID: 16934799.
    Abstract:
    Reactive oxygen species are believed to be the central mediators of beta-cell destruction that leads to type 1 and 2 diabetes, and calcium has been reported to be an important mediator of beta cell death. In the present study, the authors investigated whether Ca(2+) plays a role in hydrogen peroxide (H(2)O(2))-induced MIN6N8a mouse beta cell death. Treatment with low concentration H(2)O(2) (50 microM) was found to be sufficient to reduce MIN6N8a cell viability by 55%, largely via apoptosis. However, this H(2)O(2)-induced cell death was near completely blocked by pretreatment with BAPTA/AM (5 microM), a chelator of intracellular Ca(2+). Moreover, the intracellular calcium store channel blockers, such as, xestospongin c and ryanodine, significant protected cells from 50 microM H(2)O(2)-induced cell death and under extracellular Ca(2+)-free conditions, 50 microM H(2)O(2) elicited transient [Ca(2+)](i) increases. In addition, pharmacologic inhibitors of calpain, calcineurin, and calcium/calmodulin-dependent protein kinase II were found to have a protective effect on H(2)O(2)-induced death. Moreover, H(2)O(2)-induced apoptotic signals, such as c-JUN N-terminal kinase activation, cytochrome c release, caspase 3 activation, and poly (ADP-ribose) polymerase cleavage were all down-regulated by the intracellular Ca(2+) chelation. These findings show that [Ca(2+)](i) elevation, possibly due to release from intracellular calcium stores and the subsequent activation of Ca(2+)-mediated apoptotic signals, critically mediates low concentration H(2)O(2)-induced MIN6N8a cell death. These findings suggest that a breakdown of calcium homeostasis by low level of reactive oxygen species may be involved in beta cell destruction during diabetes development.
    [Abstract] [Full Text] [Related] [New Search]