These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tacrolimus (FK506) attenuates biphasic cytochrome c release and Bad phosphorylation following transient cerebral ischemia in mice.
    Author: Li JY, Furuichi Y, Matsuoka N, Mutoh S, Yanagihara T.
    Journal: Neuroscience; 2006 Oct 27; 142(3):789-97. PubMed ID: 16935431.
    Abstract:
    Tacrolimus (FK506) has a neuroprotective action on cerebral infarction produced by cerebral ischemia, however, detailed mechanisms underlying this action have not been fully elucidated. We examined temporal profiles of survival-and death-related signals, Bad phosphorylation, release of cytochrome c (cyt.c), activation of caspase 3 and DNA fragmentation in the brain during and after middle cerebral artery occlusion (MCAo) in mice, and then examined the effect of tacrolimus on these signals. C57BL/6J mice were subjected to transient MCAo by intraluminal suture insertion for 60 min. Tacrolimus (1 mg/kg, i.p.) was administered immediately after MCAo. There were biphasic increases in the release of cyt.c in the ischemic core and penumbra; with the first increase toward the end of the occlusion period and the second increase 3-12 h after reperfusion. Tacrolimus significantly inhibited the increase of cytosolic cyt.c during ischemia and reperfusion. Phosphorylated Bad, Ser-136 (P-Bad(136)) and Ser-155 (P-Bad(155)) were detected 30 min after MCAo and after reperfusion in the ischemic cortex, respectively. Tacrolimus increased P-Bad(136) during ischemia and prolonged P-Bad(155) expression after reperfusion. Tacrolimus also decreased caspase-3 and terminal deoxynucleotidyl transferase-mediated DNA nick-end labeling-positive cells, and reduced the size of infarct 24 h after reperfusion. Our study provided the first evidence that the neuroprotective action of tacrolimus involved inhibition of biphasic cyt.c release from mitochondria, possibly via up-regulation of Bad phosphorylation at different sites after focal cerebral ischemia and reperfusion.
    [Abstract] [Full Text] [Related] [New Search]