These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport.
    Author: Custer SK, Garden GA, Gill N, Rueb U, Libby RT, Schultz C, Guyenet SJ, Deller T, Westrum LE, Sopher BL, La Spada AR.
    Journal: Nat Neurosci; 2006 Oct; 9(10):1302-11. PubMed ID: 16936724.
    Abstract:
    Non-neuronal cells may be pivotal in neurodegenerative disease, but the mechanistic basis of this effect remains ill-defined. In the polyglutamine disease spinocerebellar ataxia type 7 (SCA7), Purkinje cells undergo non-cell-autonomous degeneration in transgenic mice. We considered the possibility that glial dysfunction leads to Purkinje cell degeneration, and generated mice that express ataxin-7 in Bergmann glia of the cerebellum with the Gfa2 promoter. Bergmann glia-specific expression of mutant ataxin-7 was sufficient to produce ataxia and neurodegeneration. Expression of the Bergmann glia-specific glutamate transporter GLAST was reduced in Gfa2-SCA7 mice and was associated with impaired glutamate transport in cultured Bergmann glia, cerebellar slices and cerebellar synaptosomes. Ultrastructural analysis of Purkinje cells revealed findings of dark cell degeneration consistent with excitotoxic injury. Our studies indicate that impairment of glutamate transport secondary to glial dysfunction contributes to SCA7 neurodegeneration, and suggest a similar role for glial dysfunction in other polyglutamine diseases and SCAs.
    [Abstract] [Full Text] [Related] [New Search]