These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Serotonin transport and serotonin transporter-mediated antidepressant recognition are controlled by 5-HT2B receptor signaling in serotonergic neuronal cells. Author: Launay JM, Schneider B, Loric S, Da Prada M, Kellermann O. Journal: FASEB J; 2006 Sep; 20(11):1843-54. PubMed ID: 16940156. Abstract: The plasma membrane 5-HT transporter (SERT) is the major protagonist in regulating extracellular 5-HT concentration and constitutes the target of drugs used to treat a host of metabolic and psychiatric disorders. The exact mechanisms sustaining SERT function still remain elusive. The present work exploits the properties of the 1C11 neuroectodermal progenitor, which acquires, upon 4 days of differentiation, a functional SERT within an integrated serotonergic phenotype to investigate regulatory mechanisms involved in SERT onset and functions. We show that poly(A) addition precedes SERT mRNA translation on day 2 of the serotonergic program. The newly translated transporter molecules immediately bind cocaine. Day 4 must be awaited to monitor antidepressant recognition and 5-HT uptake. Because external 5-HT reduces both 5-HT transport and SERT antidepressant binding, we identify 5-HT(2B) receptors as key players in controlling the overall 5-HT transport system. In the absence of external 5-HT, 5-HT(2B) receptor coupling to NO production ensures SERT phosphorylation to basal level and maximal 5-HT uptake. In the presence of 5-HT, the 5-HT(2B) receptor-PKC coupling promotes additional phosphorylations of both SERT and Na(+),K(+)-ATPase alpha-subunit, impairing the electrochemical gradient necessary to 5-HT uptake. SERT hyperphosphorylation also affects antidepressant recognition. Finally, such 5-HT(2B) receptor-mediated control of SERT activity operates in primary neurons from raphe nuclei. Altogether, our data shed new light on the 5-HT-driven post-translational modifications involved in the control of SERT activity.[Abstract] [Full Text] [Related] [New Search]