These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-resolution infrared studies in slit supersonic discharges: CH2 stretch excitation of jet-cooled CH2Cl radical.
    Author: Whitney ES, Haeber T, Schuder MD, Blair AC, Nesbitt DJ.
    Journal: J Chem Phys; 2006 Aug 07; 125(5):054303. PubMed ID: 16942209.
    Abstract:
    First high-resolution infrared spectra are presented for jet-cooled CH2 35Cl and CH2 37Cl radicals in the symmetric (nu1) CH2 stretching mode. A detailed spectral assignment yields refined lower and upper state rotational constants, as well as fine structure spin-rotation parameters from least-squares fits to the sub-Doppler line shapes for individual transitions. The rotational constants are consistent with a nearly planar structure, but do not exclude substantial large amplitude bending motion over a small barrier to planarity accessible with zero-point excitation. High level coupled cluster (singles/doubles/triples) calculations, extrapolated to the complete basis set limit, predict a slightly nonplanar equilibrium structure (theta approximately 11 degrees), with a vibrationally adiabatic treatment of the bend coordinate yielding a v = 1<--0 anharmonic frequency (393 cm(-1)) in excellent agreement with matrix studies (nu(bend) approximately 400 cm(-1)). The antisymmetric CH2 stretch vibration is not observed despite high sensitivity detection (signal to noise ratio >20:1) in the symmetric stretch band. This is consistent with density functional theory intensity calculations indicating a >35-fold smaller antisymmetric stretch transition moment for CH2Cl, and yet contrasts dramatically with high-resolution infrared studies of CH2F radical, for which both symmetric and antisymmetric CH2 stretches are observed in a nearly 2:1 intensity ratio. A simple physical model is presented based on a competition between bond-dipole and "charge-sloshing" contributions to the transition moment, which nicely explains the trends in CH2X symmetric versus asymmetric stretch intensities as a function of electron withdrawing group (X = D,Br,Cl,F).
    [Abstract] [Full Text] [Related] [New Search]