These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Automerization reaction of cyclobutadiene and its barrier height: an ab initio benchmark multireference average-quadratic coupled cluster study. Author: Eckert-Maksić M, Vazdar M, Barbatti M, Lischka H, Maksić ZB. Journal: J Chem Phys; 2006 Aug 14; 125(6):64310. PubMed ID: 16942289. Abstract: The problem of the double bond flipping interconversion of the two equivalent ground state structures of cyclobutadiene (CBD) is addressed at the multireference average-quadratic coupled cluster level of theory, which is capable of optimizing the structural parameters of the ground, transition, and excited states on an equal footing. The barrier height involving both the electronic and zero-point vibrational energy contributions is 6.3 kcal mol(-1), which is higher than the best earlier theoretical estimate of 4.0 kcal mol(-1). This result is confirmed by including into the reference space the orbitals of the CC sigma bonds beyond the standard pi orbital space. It places the present value into the middle of the range of the measured data (1.6-10 kcal mol(-1)). An adiabatic singlet-triplet energy gap of 7.4 kcal mol(-1) between the transition state (1)B(tg) and the first triplet (3)A(2g) state is obtained. A low barrier height for the CBD automerization and a small DeltaE((3)A(2g),(1)B(1g)) gap bear some relevance on the highly pronounced reactivity of CBD, which is briefly discussed.[Abstract] [Full Text] [Related] [New Search]