These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular basis of anticlastogenic potential of vanadium in vivo during the early stages of diethylnitrosamine-induced hepatocarcinogenesis in rats. Author: Chakraborty T, Pandey N, Chatterjee A, Ghosh B, Rana B, Chatterjee M. Journal: Mutat Res; 2006 Oct 30; 609(2):117-28. PubMed ID: 16942905. Abstract: Carcinogen-induced DNA base modification and subsequent DNA lesions are the critical events for the expression of premalignant phenotype of the cell. We have therefore investigated the chemopreventive efficacy of a vanadium salt against diethylnitrosamine (DEN)-induced early DNA and chromosomal damages in rat liver. Hepatocarcinogenesis was induced in male Sprague-Dawley rats with a single, necrogenic, intraperitoneal injection of DEN (200mg/kg body weight). 8-Hydroxy-2'-deoxyguanosines (8-OHdGs), strand-breaks and DNA-protein crosslinks (DPCs) were measured by HPLC, comet assay and spectrofluorimetry, respectively. There was a significant and steady elevation of modified bases 8-OHdGs along with substantial increments of the extent of single-strand-breaks (SSBs), DPCs and chromosomal aberrations (CAs) following DEN exposure. Supplementation of vanadium as ammonium metavanadate (NH(4)VO(3), +V oxidation state) at a dose of 0.5ppm in terms of the salt weight throughout the experiment abated the formations of 8-OHdGs (P<0.0001; 79.54%), tailed DNA (P<0.05; 31.55%) and length:width of DNA mass (P<0.02; 61.25%) in preneoplastic rat liver. Vanadium treatment also inhibited DPCs (P<0.0001; 58.47%) and CAs (P<0.001; 45.17%) studied at various time points. The results indicate that the anticlastogenic potential of vanadium in vivo might be due to the observed reductions in liver-specific 8-OHdGs, SSBs and/or DPCs by this trace metal. We conclude that, vanadium plays a significant role in limiting DEN-induced genotoxicity and clastogenicity during the early stages of hepatocarcinogenesis in rats.[Abstract] [Full Text] [Related] [New Search]