These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: cGMP-dependent protein kinase type I inhibits TAB1-p38 mitogen-activated protein kinase apoptosis signaling in cardiac myocytes.
    Author: Fiedler B, Feil R, Hofmann F, Willenbockel C, Drexler H, Smolenski A, Lohmann SM, Wollert KC.
    Journal: J Biol Chem; 2006 Oct 27; 281(43):32831-40. PubMed ID: 16943189.
    Abstract:
    Cardiac myocyte apoptosis during ischemia and reperfusion (I/R) is tightly controlled by a complex network of stress-responsive signaling pathways. One pro-apoptotic pathway involves the interaction of the scaffold protein TAB1 with p38 mitogen-activated protein kinase (p38 MAPK) leading to the autophosphorylation and activation of p38 MAPK. Conversely, NO and its second messenger cGMP protect cardiac myocytes from apoptosis during I/R. We provide evidence that the cGMP target cGMP-dependent protein kinase type I (PKG I) interferes with TAB1-p38 MAPK signaling to protect cardiac myocytes from I/R injury. In isolated neonatal cardiac myocytes, activation of PKG I inhibited the interaction of TAB1 with p38 MAPK, p38 MAPK phosphorylation, and apoptosis induced by simulated I/R. During I/R in vivo, mice with a cardiac myocyte-restricted deletion of PKG I displayed a more pronounced interaction of TAB1 with p38 MAPK and a stronger phosphorylation of p38 MAPK in the myocardial area at risk during reperfusion and more apoptotic cardiac myocytes in the infarct border zone as compared with wild-type littermates. Notably, adenoviral expression of a constitutively active PKG I mutant truncated at the N terminus(PKGI-DeltaN1-92) did not inhibit p38 MAPK phosphorylation and apoptosis induced by simulated I/R in vitro, indicating that the N terminus of PKG I is required. As shown by co-immunoprecipitation experiments in HEK293 cells, cGMP-activated PKG I, but not constitutively active PKG I-DeltaN1-92 or PKG I mutants carrying point mutations in the N-terminal leucine-isoleucine zipper, interacted with p38 MAPK, and prevented the binding of TAB1 to p38 MAPK. Together, our data identify a novel interaction between the cGMP target PKG I and the TAB1-p38 MAPK signaling pathway that serves as a defense mechanism against myocardial I/R injury.
    [Abstract] [Full Text] [Related] [New Search]