These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature. Author: Girguis PR, Childress JJ. Journal: J Exp Biol; 2006 Sep; 209(Pt 18):3516-28. PubMed ID: 16943492. Abstract: The hydrothermal vent tubeworm Riftia pachyptila is a dominant member of many hydrothermal vent communities along the East Pacific rise and is one of the fastest growing metazoans known. Riftia flourish in diffuse hydrothermal fluid flows, an environment with high spatial and temporal heterogeneity in physical and chemical conditions. To date, physiological and biochemical studies of Riftia have focused on Riftia's adaptations to its chemoautotrophic bacterial symbionts. However the relation between in situ physico-chemical heterogeneity and Riftia host and symbiont metabolism, in particular symbiont chemoautotrophic function, remain poorly understood. Accordingly, we conducted experiments using shipboard high-pressure respirometers to ascertain the effect of varying substrate concentrations and temperature on Riftia metabolite uptake and symbiont carbon fixation. Our results show that substrate concentrations can strongly govern Riftia oxygen and sulfide uptake rates, as well as net carbon uptake (which is a proxy for chemoautotrophic primary production). However, after sufficient exposure to sulfide and oxygen, Riftia were capable of sustaining symbiont autotrophic function for several hours in seawater devoid of sulfide or oxygen, enabling the association to support symbiont metabolism through brief periods of substrate deficiency. Overall, temperature had the largest influence on Riftia metabolite uptake and symbiont autotrophic metabolism. In sum, while Riftia requires sufficient availability of substrates to support symbiont chemoautotrophic function, it is extremely well poised to buffer the temporal and spatial heterogeneity in environmental substrate concentrations, alleviating the influence of environmental heterogeneity on symbiont chemoautotrophic function.[Abstract] [Full Text] [Related] [New Search]