These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Late neural adaptations to electrostimulation resistance training of the plantar flexor muscles.
    Author: Jubeau M, Zory R, Gondin J, Martin A, Maffiuletti NA.
    Journal: Eur J Appl Physiol; 2006 Sep; 98(2):202-11. PubMed ID: 16944193.
    Abstract:
    The present study aimed to examine early and late neural adaptations to short-term electrostimulation training of the plantar flexor muscles. Changes in triceps surae muscle activation (twitch interpolation), maximal electromyographic (EMG) activity, H-reflex amplitudes and antagonist coactivation were investigated after electrostimulation training (4 weeks) and after 4 weeks of detraining in a group of ten young healthy men. Maximal voluntary contraction torque was significantly higher (P < 0.01) after training (+19.4%) and detraining (+17.2%) with respect to baseline. Activation level, soleus and lateral gastrocnemius EMG normalized to the maximal M-wave significantly increased as a result of training (P < 0.05), and these gains were preserved after detraining, excepted for soleus EMG. Maximal H reflex to maximal M wave ratio increased significantly between baseline and detraining for both soleus and lateral gastrocnemius muscles (P < 0.05). Tibialis anterior coactivation was unchanged after training but significantly decreased after the detraining period (P < 0.01). Short-term electrostimulation resistance training was accompanied by early (increased muscle activation and EMG activity) and late neural adaptations (increased spinal reflex amplitude and decreased coactivation), likely explaining the increase and then the preservation of the maximal voluntary strength. These effects may help in conceiving and programming effective electrostimulation therapy programs for both healthy and immobilized plantar flexor muscles.
    [Abstract] [Full Text] [Related] [New Search]