These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Innate immunity in multiple sclerosis: myeloid dendritic cells in secondary progressive multiple sclerosis are activated and drive a proinflammatory immune response.
    Author: Karni A, Abraham M, Monsonego A, Cai G, Freeman GJ, Hafler D, Khoury SJ, Weiner HL.
    Journal: J Immunol; 2006 Sep 15; 177(6):4196-202. PubMed ID: 16951385.
    Abstract:
    Multiple sclerosis (MS) is postulated to be a T cell-mediated autoimmune disease characterized clinically by a relapsing-remitting (RR) stage followed by a secondary progressive (SP) phase. The progressive phase is felt to be secondary to neuronal degenerative changes triggered by inflammation. The status of the innate immune system and its relationship to the stages of MS is not well understood. Dendritic cells (DCs) are professional APCs that are central cells of the innate immune system and have the unique capacity to induce primary immune responses. We investigated circulating myeloid DCs isolated directly from the blood to determine whether there were abnormalities in myeloid DCs in MS and whether they were related to disease stage. We found that SP-MS subjects had an increased percentage of DCs expressing CD80, a decreased percentage expressing PD-L1, and an increased percentage producing IL-12 and TNF-alpha compared with RR-MS or controls. A higher percentage of DCs from both RR and SP-MS patients expressed CD40 compared with controls. We then investigated the polarization effect of DCs from MS patients on naive T cells taken from cord blood using a MLR assay. Whereas DCs from RR-MS induced higher levels of Th1 (IFN-gamma, TNF-alpha) and Th2 (IL-4, IL-13) cytokines compared with controls, DCs from SP-MS only induced a polarized Th1 response. These results demonstrate abnormalities of DCs in MS and may explain the immunologic basis for the different stages and clinical patterns of MS.
    [Abstract] [Full Text] [Related] [New Search]