These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: N-acetylcysteine attenuates TNF-alpha induced changes in secretion of interleukin-6, plasminogen activator inhibitor-1 and adiponectin from 3T3-L1 adipocytes.
    Author: Araki S, Dobashi K, Kubo K, Yamamoto Y, Asayama K, Shirahata A.
    Journal: Life Sci; 2006 Nov 17; 79(25):2405-12. PubMed ID: 16952378.
    Abstract:
    TNF-alpha is a key molecule in obesity-related metabolic disturbances. This study was designed to determine whether N-acetylcysteine (NAC), an antioxidant, prevents the activation of nuclear factor-kappaB (NF-kappaB) by exogenously administered TNF-alpha in adipocytes, and whether such change affects the production of adipocytokines. The treatment of well-differentiated 3T3-L1 cells with 20 mM of NAC significantly increased the reduced glutathione concentration up to 150% of control. The treatment with 10 ng/ml of TNF-alpha decreased antioxidant enzyme levels such as CuZn-superoxide dismutase (SOD), MnSOD and catalase, and activated NF-kappaB in 3T3-L1 adipocytes. The activation of NF-kappaB was significantly prevented by the pretreatment with 20 mM of NAC. TNF-alpha (1-10 ng/ml) dose-dependently increased interleukin (IL)-6 and plasminogen activator inhibitor-1 (PAI-1) secretion from 3T3-L1 adipocytes, while decreased adiponectin secretion. NAC (5-20 mM) attenuated the TNF-alpha-induced changes in these adipocytokine secretions in a dose-dependent manner. The effect of TNF-alpha and NAC on the adipocytokine productions was exerted at the m-RNA level, judging from results of the real time RT-PCR analysis. The present study revealed that NAC inhibited the TNF-alpha-mediated activation of NF-kappaB and improved the adverse changes in the levels of IL-6, PAI-1 and adiponectin in 3T3-L1 adipocytes. NAC may have the potential to improve the obesity-related abnormal adipocytokine metabolism by attenuating the TNF-alpha-induced oxidant-antioxidant imbalance in adipocytes.
    [Abstract] [Full Text] [Related] [New Search]