These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Connective-tissue macromolecules in Golgi chicken tendon organs and at their interface with muscle fibers and adjoining tendinous structures. Author: Maier A, Mayne R. Journal: Am J Anat; 1990 Jul; 188(3):239-48. PubMed ID: 1695477. Abstract: Tendon organs from leg and forearm muscles of white leghorn chickens were examined with a library of monoclonal antibodies to determine the composition of their connective-tissue framework and the types of connective-tissue macromolecules that occur at the sites where muscle fibers attach to the receptors. The capsules of the tendon organs were positive for connective-tissue macromolecules typical of basal lamina (collagen type IV, laminin, and heparin sulfate proteoglycan) and for tenascin, collagen types III and VI, and fibronectin. Connective-tissue bundles in the lumen of a receptor reacted primarily with antibodies against collagen type I and 4-chondroitin sulfate. The narrow partitions that divide each lumen into compartments stained for collagen type III. Toward its tendinous end, a receptor made few contacts with muscle fibers. Instead, the capsule and the collagenous bundles blended gradually with the intermuscular portions of tendons. At the muscular end, the connections were more complex. Muscle fibers that attached in series to tendon organs split to produce basal lamina-covered, finger-like extensions, which were separated from each other by fissures. Tongues of connective tissue containing tenascin, collagen types I and VI, and fibronectin extended into the fissures. Distally the tongues were continuous with the tenascin in the capsule and just internal to the capsule, fibronectin and basal lamina macromolecules in the capsule, and collagen type I in the collagenous bundles. The uninterrupted presence of these macromolecules around terminating muscle fibers and in the capsule and/or the intraluminal collagen bundles suggests that muscle fibers that attach in series at the muscular end exert a force during muscular contraction on the intraluminal collagen bundles and on the receptor capsule.[Abstract] [Full Text] [Related] [New Search]