These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Combined administration of captopril with an antihypertensive Val-Tyr di-peptide to spontaneously hypertensive rats attenuates the blood pressure lowering effect.
    Author: Matsui T, Zhu XL, Watanabe K, Tanaka K, Kusano Y, Matsumoto K.
    Journal: Life Sci; 2006 Nov 25; 79(26):2492-8. PubMed ID: 16959271.
    Abstract:
    Some di-peptides have been proven to exert an antihypertensive effect in mild-hypertensive subjects. The aim of this study was to clarify whether combined administration of an ACE inhibitor, captopril, with an antihypertensive di-peptide Val-Tyr (VY) would alter their potent antihypertensive effects in spontaneously hypertensive rats (SHRs). Single oral administration of captopril (2.5 mg/kg), VY (25 mg/kg), or captopril (2.5 mg/kg)+VY (25 mg/kg) to 18-week-old male SHRs was performed. Systolic blood pressure (SBP) was measured up to 9 h, and plasma captopril concentrations were determined. A transport study of captopril and/or VY across living rat jejunum from SHRs was also performed to evaluate the kinetics of absorption. Combined administration of captopril with VY failed to lower the BP during the 9-h experiment. A transport study of captopril or VY revealed that VY inhibited captopril transport, and vice versa, in a competitive manner and exhibited an approximately 1/3-fold lower Ki value for captopril compared with that for VY; indicating that both compounds compete for the same membrane transport pathway. A 50% decrease in plasma captopril levels by combined administration with VY supported that the attenuation of the BP lowering effect was due to inhibition of captopril uptake by VY. Consequently, our findings suggest that subjects treated with ACE inhibitors for hypertension should avoid combined-intake with antihypertensive foods that are rich in small peptides due to the competitive inhibition of drug uptake by these peptides.
    [Abstract] [Full Text] [Related] [New Search]