These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular cloning and functional expression of a VIP-specific receptor. Author: Zhou H, Huang J, Murthy KS. Journal: Am J Physiol Gastrointest Liver Physiol; 2006 Oct; 291(4):G728-34. PubMed ID: 16959956. Abstract: Three receptors for VIP and pituitary adenylate cyclase-activating peptide (PACAP) have been cloned and characterized: PAC(1), with high affinity for PACAP, and VPAC(1) and VPAC(2) with equally high affinity for VIP and PACAP. The existence of a VIP-specific receptor (VIP(s)) in guinea pig (GP) teniae coli smooth muscle was previously surmised on the basis of functional studies, and its existence was confirmed by cloning of a partial NH(2)-terminal sequence. Here we report the cloning of the full-length cDNAs of two receptors, a VPAC(2) receptor from GP gastric smooth muscle and VIP(s) from GP teniae coli smooth muscle. The cDNA sequence of the VIP(s) encodes a 437-amino acid protein (M(r) 49,560) that possesses 87% similarity to VPAC(2) receptors in rat and mouse and differs from the VPAC(2) receptor in GP gastric smooth muscle by only two amino-acid residues, F(40)F(41) in lieu of L(40)L(41). In COS-1 cells transfected with the GP teniae coli smooth muscle receptor, only VIP bound with high affinity (IC(50) 1.4 nM) and stimulated cAMP formation with high potency (EC(50) 1 nM). In contrast, in COS-1 cells transfected with the GP gastric smooth muscle receptor, both VIP and PACAP bound with equally high affinity (IC(50) 2.3 nM) and stimulated cAMP with equally high potency (EC(50) 1.5 nM). We conclude that the receptor cloned from GP teniae coli smooth muscle is a VIP(s) distinct from VPAC(1) and VPAC(2) receptors. The ligand specificity in this species is determined by a pair of adjacent phenylalanine residues (L(40)L(41)) in the NH(2)-terminal ligand-binding domain.[Abstract] [Full Text] [Related] [New Search]