These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Humanin is a novel neuroprotective agent against stroke. Author: Xu X, Chua CC, Gao J, Hamdy RC, Chua BH. Journal: Stroke; 2006 Oct; 37(10):2613-9. PubMed ID: 16960089. Abstract: BACKGROUND AND PURPOSE: Humanin (HN) is a 24-amino acid peptide best known for its ability to protect neurons from damage caused by Alzheimer disease-related proteins. This study examines the neuroprotective effects of HNG (a potent form of HN) on focal cerebral ischemia/reperfusion injury in mice. METHODS: Mice underwent middle cerebral artery occlusion for 75 minutes followed by 24-hour reperfusion. Mice were pretreated with 0.1 microg HNG (intracerebroventricularly) 30 minutes before ischemia; posttreated at 0, 2, 4, and 6 hours after ischemia; or pretreated with 1 microg HNG (intraperitoneally) 1 hour before ischemia. Neurological deficits and cerebral infarct volume were evaluated. Neuronal apoptosis and activated poly(ADP-ribose) polymerase expression were measured by TUNEL and Western blot analysis, respectively. Activated ERKs were examined by Western blot analysis. RESULTS: Pretreatment with 0.1 microg HNG (intracerebroventricularly) 30 minutes before ischemia reduced cerebral infarct volume from 56.2+/-3.0% to 26.1+/-1.4% (P<0.01). HNG posttreatment after 4 hours of reperfusion reduced cerebral infarct volume to 45.6+/-2.6% (P<0.05). Pretreatment with 1 microg HNG (intraperitoneally) 1 hour before ischemia or posttreatment after 2 hours of reperfusion reduced cerebral infarct volume significantly. HNG also significantly improved neurological function and inhibited both neuronal apoptosis as well as poly(ADP-ribose) polymerase activation. A significant decrease of phospho-ERK was observed in mice treated with HNG, whereas phospho-JNK and phospho-p38 levels were not altered. CONCLUSIONS: Our results demonstrate that HNG protects against cerebral ischemia/reperfusion injury in mice. HNG offers neuroprotection in vivo at least in part by inhibiting ERK activation. These findings suggest a potential therapeutic role for HNG in the treatment of stroke.[Abstract] [Full Text] [Related] [New Search]