These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Wnt signaling and osteoblastogenesis.
    Author: Bodine PV, Komm BS.
    Journal: Rev Endocr Metab Disord; 2006 Jun; 7(1-2):33-9. PubMed ID: 16960757.
    Abstract:
    Wnts are a large family of growth factors that mediate fundamental biological processes like embryogenesis, organogenesis and tumorigenesis. These proteins bind to a membrane receptor complex comprised of a frizzled (FZD) G-protein-coupled receptor (GPCRs) and a low-density lipoprotein (LDL) receptor-related protein (LRP). The formation of this ligand-receptor complex initiates a number of intracellular signaling cascades that includes the canonical/beta-catenin pathway, as well as several GPCR-mediated noncanonical pathways. In recent years, canonical Wnt signaling has been shown to play a substantial role in the control of bone formation. Clinical investigations have found that mutations in LRP-5 are associated with bone mineral density and fractures. For example, loss-of-function mutations in LRP-5 cause osteoporosis pseudoglioma syndrome, while gain-of-function mutations lead to high bone mass phenotypes. Studies of knockout and transgenic mouse models for Wnt pathway components like Wnt-10b, LRP-5/6, secreted frizzled-related protein-1, dickkopf-2, Axin-2 and beta-catenin have demonstrated that canonical signaling modulates most aspects of osteoblast physiology including proliferation, differentiation, bone matrix formation/mineralization and apoptosis as well as coupling to osteoclastogenesis and bone resorption. Future studies in this rapidly growing area of research should focus on elucidating Wnt/FZD specificity in the control of bone cell function, the role of noncanonical pathways in skeletal remodeling, and direct effects of Wnts on cells of the osteoclast lineage.
    [Abstract] [Full Text] [Related] [New Search]