These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interactions of palmitoyl carnitine with the endothelium in rat aorta. Author: Dainty IA, Bigaud M, McGrath JC, Spedding M. Journal: Br J Pharmacol; 1990 Jun; 100(2):241-6. PubMed ID: 1696151. Abstract: 1. Palmitoyl carnitine (10-1000 microM) resembled Bay K 8644 (10-1000 nM) in that it directly contracted rat aortic rings which were partially depolarized with K+ (12 mM). However, the effects of Bay K 8644 were reduced in the presence of endothelium whereas the presence of the endothelium hardly affected the palmitoyl carnitine-induced contractions, which occurred at high concentrations (greater than 10 microM). 2. Lower concentrations of palmitoyl carnitine (0.3-30 microM; EC50 1.1 microM), but not Bay K 8644, carnitine or palmitic acid, antagonized the relaxant effects of acetylcholine in rat aorta. The antagonism was specific for endothelium-dependent relaxations, in that the relaxations to ATP and the calcium ionophore A23187 were also non-competitively antagonized, albeit at slightly higher concentrations, whereas the direct relaxant effects of sodium nitroprusside were unaffected. Palmitoyl carnitine therefore antagonizes the effects or the release of endothelial-derived relaxant factor (EDRF). The inhibitory effects were reversed on prolonged washout, indicating that the effects were not due to destruction of the endothelial cells. 3. In superfusion experiments, palmitoyl carnitine inhibited the release of EDRF from rat aorta but did not affect the responsiveness to exogenous EDRF, indicating a site of action at the endothelial cell. In superfusion experiments, palmitoyl carnitine, and lysophosphatidyl choline, caused direct relaxations of the aorta, indicating EDRF release, prior to inhibition of release evoked by receptor stimulation. These substances may modulate vascular responsiveness under certain conditions.[Abstract] [Full Text] [Related] [New Search]