These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel form of a single X-linked visual pigment gene in a unique dichromatic color-vision defect. Author: Hayashi T, Kubo A, Takeuchi T, Gekka T, Goto-Omoto S, Kitahara K. Journal: Vis Neurosci; 2006; 23(3-4):411-7. PubMed ID: 16961974. Abstract: In normal trichromats, the long- (L) and middle-wavelength-sensitive (M) pigment genes are arranged in a head-to-tandem array on the X chromosome. Two amino acids at positions 277 and 285, encoded by exon 5 of the L and M genes, respectively, are essential for the spectral difference between L and M pigments whose spectral peaks are at approximately 560 and 530 nm. Intragenic or intergenic unequal crossing-over commonly occurs between the highly homologous L and M genes, resulting in red-green color vision deficiencies. The dichromacy is usually associated with a single L gene for deuteranopia or a single 5' L-M 3' hybrid gene with M-gene exon 5 for protanopia. We clinically diagnosed a total of 88 male dichromats using a Nagel model I anomaloscope, which included one unclassified subject in addition to 31 protanopes and 56 deuteranopes. The objective of this study was to characterize the phenotype of the subject and to determine the genotype of his X-linked pigment genes. The subject accepted not only any red-green mixture but also an extended yellow-scale range at each matching point (i.e. 20 to 32 scale units at the green primary and 3.5 to 6 scale units at the red primary). The slopes of regression lines were in the range of -0.34 to -0.23, while the mean slopes for the protanopes and deuteranopes were -0.38 and -0.01, respectively. Spectral sensitivity tests showed that the subject's curve was shifted between the protanope and deuteranope curves. Molecular analysis revealed a novel form of a single pigment gene with a unique arrangement of exon 5 (Y277 from the L gene and A285 from the M gene). The predicted lambdamax (541 to 546 nm) of the unique pigment was closer to the M than to the L pigment. Our outcome suggests that intragenic unequal crossing-over may have occurred between amino acid positions 279 and 283.[Abstract] [Full Text] [Related] [New Search]