These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Further characterization of the cathepsin L-associated protein and its gene in two species of the brine shrimp, Artemia. Author: Liu L, Warner AH. Journal: Comp Biochem Physiol A Mol Integr Physiol; 2006 Dec; 145(4):458-67. PubMed ID: 16962350. Abstract: The major cysteine protease in embryos and larvae of the brine shrimp Artemia franciscana is a heterodimer composed of a cathepsin L-like polypeptide of 28.5 kDa and a 31.5 kDa polypeptide called the cathepsin L-associated protein or CLAP. In a previous study, CLAP was shown to be a cell adhesion protein containing two Fas I domains and two GTP/ATP binding sites known as Walker A and B motifs. Here, we have characterized CLAP and its genes to better understand the role of this protein in Artemia development. The polymerase chain reaction was used to investigate the structure of the CLAP gene in two species of Artemia, the New World bisexual diploid A. franciscana and the Old World parthenogenetic tetraploid Artemia parthenogenetica. The protein coding region of the CLAP gene from each species was 99.5% identical for a protein of 332 amino acids, while the 3' non-coding region, representing nearly 45% of the gene, was only 86% identical between the two related species. However, while the CLAP gene is intronless in A. franciscana, in A. parthenogenetica the gene contained a mini-intron of 30 base pairs in the 3' non-coding region. The sequences representing the CLAP gene in A. franciscana and A. parthenogenetica have been entered into the NCBI database as AY757920 and DQ100385, respectively. Northern blot analysis showed that while the cathepsin L gene is expressed constitutively in Artemia franciscana embryos and young larvae, the CLAP gene is not expressed in late embryos and young larvae. In contrast, Western blots indicated that CLAP is present in developing embryos and young larvae, at least to the first larval molt, supporting results obtained previously showing CLAP's resistance to degradation by its dimeric partner, cathepsin L. At the protein level we showed that the GTP/ATP binding sites in CLAP are functional with rate constants of 0.024 and 0.022 for GTP and ATP hydrolase activity, respectively. GTP but not ATP also had a slight stimulatory effect on cathepsin L activity of the heterodimeric protease containing CLAP. Our results support the hypothesis that CLAP plays an important role in targeting and expression regulation of cathepsin L activity during early development of Artemia.[Abstract] [Full Text] [Related] [New Search]