These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Self-association of collagen triple helic peptides into higher order structures.
    Author: Kar K, Amin P, Bryan MA, Persikov AV, Mohs A, Wang YH, Brodsky B.
    Journal: J Biol Chem; 2006 Nov 03; 281(44):33283-90. PubMed ID: 16963782.
    Abstract:
    Interest in self-association of peptides and proteins is motivated by an interest in the mechanism of physiologically higher order assembly of proteins such as collagen as well as the mechanism of pathological aggregation such as beta-amyloid formation. The triple helical form of (Pro-Hyp-Gly)(10), a peptide that has proved a useful model for molecular features of collagen, was found to self-associate, and its association properties are reported here. Turbidity experiments indicate that the triple helical peptide self-assembles at neutral pH via a nucleation-growth mechanism, with a critical concentration near 1 mM. The associated form is more stable than individual molecules by about 25 degrees C, and the association is reversible. The rate of self-association increases with temperature, supporting an entropically favored process. After self-association, (Pro-Hyp-Gly)(10) forms branched filamentous structures, in contrast with the highly ordered axially periodic structure of collagen fibrils. Yet a number of characteristics of triple helix assembly for the peptide resemble those of collagen fibril formation. These include promotion of fibril formation by neutral pH and increasing temperature; inhibition by sugars; and a requirement for hydroxyproline. It is suggested that these similar features for peptide and collagen self-association are based on common lateral underlying interactions between triple helical molecules mediated by hydrogen-bonded hydration networks involving hydroxyproline.
    [Abstract] [Full Text] [Related] [New Search]