These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A new quantum method for electrostatic solvation energy of protein.
    Author: Mei Y, Ji C, Zhang JZ.
    Journal: J Chem Phys; 2006 Sep 07; 125(9):094906. PubMed ID: 16965118.
    Abstract:
    A new method that incorporates the conductorlike polarizable continuum model (CPCM) with the recently developed molecular fractionation with conjugate caps (MFCC) approach is developed for ab initio calculation of electrostatic solvation energy of protein. The application of the MFCC method makes it practical to apply CPCM to calculate electrostatic solvation energy of protein or other macromolecules in solution. In this MFCC-CPCM method, calculation of protein solvation is divided into calculations of individual solvation energies of fragments (residues) embedded in a common cavity defined with respect to the entire protein. Besides computational efficiency, the current approach also provides additional information about contribution to protein solvation from specific fragments. Numerical studies are carried out to calculate solvation energies for a variety of peptides including alpha helices and beta sheets. Excellent agreement between the MFCC-CPCM result and those from the standard full system CPCM calculation is obtained. Finally, the MFCC-CPCM calculation is applied to several real proteins and the results are compared to classical molecular mechanics Poisson-Boltzmann (MM/PB) and quantum Divid-and-Conque Poisson-Boltzmann (D&C-PB) calculations. Large wave function distortion energy (solute polarization energy) is obtained from the quantum calculation which is missing in the classical calculation. The present study demonstrates that the MFCC-CPCM method is readily applicable to studying solvation of proteins.
    [Abstract] [Full Text] [Related] [New Search]