These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Irreversible blockade of monoamine oxidases reveals the critical role of 5-HT transmission in locomotor response induced by nicotine in mice.
    Author: Villégier AS, Salomon L, Blanc G, Godeheu G, Glowinski J, Tassin JP.
    Journal: Eur J Neurosci; 2006 Sep; 24(5):1359-65. PubMed ID: 16965547.
    Abstract:
    Although nicotine is generally considered as the main compound responsible for addictive properties of tobacco, some experimental data indicate that nicotine does not exhibit all the characteristics of other substances of misuse such as psychostimulants and opiates. For example, nicotine generally fails to induce locomotor response in mice and self-administration of nicotine is difficult to obtain in rats. We have shown recently that a pretreatment with mixed irreversible monoamine oxidase inhibitors (MAOIs), such as tranylcypromine, triggers a locomotor response to nicotine in mice and induces a robust self-administration of nicotine in rats. We show here that when mice were pretreated with enhancers of extracellular levels of noradrenaline, dopamine or serotonin (D-amphetamine, GBR12783 or para-chloro-amphetamine, respectively) and injected with nicotine (1 mg/kg), only those animals pretreated with para-chloro-amphetamine exhibited a specific locomotor response to nicotine. These data indicate a critical role of serotonin in nicotine-induced locomotor activity in mice. This was further confirmed in microdialysis experiments showing that nicotine induces an increase in extracellular serotonin levels in the ventral striatum in mice pretreated with tranylcypromine. This effect of nicotine on extracellular serotonin levels was absent in mice lacking the beta2-subunit of the nicotinic acetylcholine receptor. Our data suggest that mixed irreversible MAOIs contained in tobacco facilitate the effects of nicotine on serotonin release, thus allowing the locomotor and rewarding effects of nicotine.
    [Abstract] [Full Text] [Related] [New Search]