These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: T1- and T2-weighted fast spin-echo imaging of the brachial plexus and cervical spine with IDEAL water-fat separation.
    Author: Reeder SB, Yu H, Johnson JW, Shimakawa A, Brittain JH, Pelc NJ, Beaulieu CF, Gold GE.
    Journal: J Magn Reson Imaging; 2006 Oct; 24(4):825-32. PubMed ID: 16969792.
    Abstract:
    PURPOSE: To compare the iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) method with fat-saturated T1-weighted (T1W) and T2W fast spin-echo (FSE) and short-TI inversion recovery (STIR) imaging of the brachial plexus and cervical spine. MATERIALS AND METHODS: Images acquired at 1.5T in five volunteers using fat-saturated T1W and T2W FSE imaging and STIR were compared with T1W and T2W IDEAL-FSE images. Examples of T1W and T2W IDEAL-FSE images acquired in patients are also shown. RESULTS: T1W and T2W IDEAL-FSE demonstrated superior fat suppression (P<0.05) and image quality (P<0.05), compared to T1W and T2W fat-saturated FSE, respectively. SNR performance of T1W-IDEAL-FSE was similar to T1W FSE in the spinal cord (P=0.250) and paraspinous muscles (P=0.78), while T2W IDEAL-FSE had superior SNR in muscle (P=0.02) and CSF (P=0.02), and marginally higher cord SNR (P=0.09). Compared to STIR, T2W IDEAL-FSE demonstrated superior image quality (P<0.05), comparable fat suppression (excellent, P=1.0), and higher SNR performance (P<0.001). CONCLUSION: IDEAL-FSE is a promising method for T1W and T2W imaging of the brachial plexus and cervical spine.
    [Abstract] [Full Text] [Related] [New Search]