These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Probing the nucleation mechanism for the binary n-nonane/1-alcohol series with atomistic simulations. Author: Nellas RB, McKenzie ME, Chen B. Journal: J Phys Chem B; 2006 Sep 21; 110(37):18619-28. PubMed ID: 16970491. Abstract: The AVUS-HR approach, which combines histogram reweighting with aggregation-volume-bias Monte Carlo nucleation simulations using self-adaptive umbrella sampling, was extended to multicomponent nucleation systems. It was applied to investigate the homogeneous vapor-liquid nucleation for the binary n-nonane/1-alcohol series, including the n-nonane/methanol, n-nonane/ethanol, n-nonane/1-propanol, n-nonane/1-butanol, n-nonane/1-hexanol, and n-nonane/1-decanol systems. The simple transferable potentials for phase equilibria-united atom force field was used in this investigation. It was found that the nucleation free energy (NFE) contour plots obtained for these binary n-nonane/1-alcohol nucleation systems exhibit rather interesting mechanistic features, some of which are distinct from other binary systems previously studied (such as water/ethanol and water/n-nonane). In addition, the NFE profiles show a subtle evolution with the increase in alcohol chain length, from a somewhat two-pathway type of shape as observed for the n-nonane/methanol system to a more normal single-pathway one for systems involving longer alcohols (1-hexanol and 1-decanol). In contrast, the NFE maps obtained for the other three binary systems involving those medium-length alcohols display the most striking feature with the saddle point stretched almost all the way from the n-nonane-enriched to the alcohol-enriched domain, implying that multiple pathways coexist on the nucleation map. These free energy profiles were shown to be consistent with the non-ideal nucleation behavior observed experimentally for this binary series, namely, a rather reluctant conucleation of the alcohols with n-nonane. In particular, this non-ideal behavior becomes more severe with a decrease in the alcohol chain length. Also, analysis of the compositions of the critical nuclei indicates a reluctant mixing behavior between these two species, i.e., depletion of the alcohol at low alcohol activity or depletion of n-nonane at low n-nonane activity, in agreement with the experimental interpretations. Furthermore, a microscopic inhomogeneity is present inside these critical nuclei, that is, alcohols aggregate via hydrogen bonds forming alcohol-enriched domains.[Abstract] [Full Text] [Related] [New Search]