These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interactions of L-arginine with Langmuir monolayers of di-n-dodecyl hydrogen phosphate at the air-water interface. Author: Hossain MM, Iimura K, Kato T. Journal: J Colloid Interface Sci; 2006 Dec 01; 304(1):200-7. PubMed ID: 16970962. Abstract: The surface phase behavior of di-n-dodecyl hydrogen phosphate (DDP) in Langmuir monolayer and its interactions with L-arginine (L-arg) have been investigated by measuring pi-A isotherms with a film balance and observing monolayer morphology with a Brewster angle microscopy (BAM). The DDP monolayers on pure water show a first-order liquid expanded-liquid condensed (LE-LC) phase transition and form fingering LC domains having uniform brightness at different temperatures. At 15 degrees C, the pi-A isotherms on pure water and on different concentration solutions of L-arg show a limiting molecular area at approximately 0.50 nm(2)/molecule. With increasing the subphase concentration of L-arg up to 4.0 x 10(-4)M, the LE and the LE-LC coexistence regions shift to larger molecular areas and higher surface pressures, respectively. With a further increase in the concentration of L-arg beyond this critical concentration, these isotherms show little or no more expansion. These results have been explained by considering the fact that the L-arg undergoes complexation with the DDP to form L-arg-DDP that remains in equilibrium with the components at the air-water interface. As the concentration of L-arg in the subphase increases, the equilibrium shifts towards the complex. At a concentration of L-arg > or =4.0 x 10(-4)M, the DDP monolayers get saturated and show the characteristics of the new amphiphile, L-arg-DDP. BAM is applied to confirm the above results. When the concentration of the L-arg is <4.0 x 10(-4)M, domains always start forming at an area of approximately 0.64 nm(2)/molecule, which is the critical molecular area for the phase transition in the DDP monolayers on pure water. In contrast, when the monolayers are formed on a solution containing > or =4.0 x 10(-4)M L-arg, comparatively smaller size domains are formed after the appearance of a new cusp point at approximately 0.55 nm(2)/molecule. With an increase in the concentration of L-arg in the subphase, the size of the domains decreases indicating that the fraction of the DDP gradually decreases, whereas the fraction of the complex gradually increases. In addition, a very simple procedure for determination of the stability constant, which is 2.6 x 10(4)M(-1) at 15 degrees C, has been suggested.[Abstract] [Full Text] [Related] [New Search]