These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alternative and classical NF-kappa B signaling retain autoreactive B cells in the splenic marginal zone and result in lupus-like disease. Author: Enzler T, Bonizzi G, Silverman GJ, Otero DC, Widhopf GF, Anzelon-Mills A, Rickert RC, Karin M. Journal: Immunity; 2006 Sep; 25(3):403-15. PubMed ID: 16973390. Abstract: Expression of B cell-activating factor (BAFF), a critical B cell survival factor, is elevated in autoimmune and lymphoproliferative disorders. Mice overproducing BAFF develop systemic lupus erythematosus (SLE)-like disease and exhibit B cell activation of classical and alternative NF-kappaB-signaling pathways. We used a genetic approach and found that both NF-kappaB-signaling pathways contributed to disease development but act through distinct mechanisms. Whereas BAFF enhanced long-term B cell survival primarily through the alternative, but not the classical, NF-kappaB pathway, it promoted immunoglobulin class switching and generation of pathogenic antibodies through the classical pathway. Activation of the alternative NF-kappaB pathway resulted in integrin upregulation, thereby retaining autoreactive B cells in the splenic marginal zone, a compartment that contributes to their survival. Thus, both classical and alternative NF-kappaB signaling are important for development of lupus-like disease associated with BAFF overproduction. The same mechanisms may be involved in the pathogenesis of human SLE.[Abstract] [Full Text] [Related] [New Search]