These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Production of hydrolysate with antioxidative activity by enzymatic hydrolysis of extruded corn gluten. Author: Zheng XQ, Li LT, Liu XL, Wang XJ, Lin J, Li D. Journal: Appl Microbiol Biotechnol; 2006 Dec; 73(4):763-70. PubMed ID: 16977469. Abstract: Hydrolysate of extruded corn gluten with higher solubility and antioxidative property was prepared. Extrusion and starch removal of corn gluten were applied as pretreatment before enzymatic hydrolysis by Alcalase. The amylase hydrolysis of starch at 70 degrees C for 3 h resulted in the removal of the starch from the extruded corn gluten. The best hydrolysis results can be obtained by conducting the hydrolysis at 60 degrees C with water addition 20 g/g protein, enzyme addition 0.048 Ansen units/g protein, pH 8.5, and 120 min. Degree of hydrolysis of extruded and nonextruded corn gluten reached 39.54 and 31.16%, respectively, under the optimal condition. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the optimal hydrolysate revealed that proteolysis of extruded corn gluten was more extensive than proteolysis of its counterpart which was not subjected to extrusion. The molecular weight of the peptides in the optimal hydrolysate was mainly over 3,710-660 Da as determined by gel filtration chromatography. The hydrolysates displayed good solubility and antioxidative activity. The separation profile of the hydrolysate on an ion exchange chromatography of Q-Sepharose Fast Flow showed that many kinds of peptides had antioxidative effect. A new peptide with antioxidative activity was purified, and its amino acid sequence was Phe-Pro-Leu-Glu-Met-Met-Pro-Phe, which was identified by Q-TOF2 mass spectrometry.[Abstract] [Full Text] [Related] [New Search]