These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pyruvate protects cerebellar granular cells from 6-hydroxydopamine-induced cytotoxicity by activating the Akt signaling pathway and increasing glutathione peroxidase expression. Author: Fernandez-Gomez FJ, Pastor MD, Garcia-Martinez EM, Melero-Fernandez de Mera R, Gou-Fabregas M, Gomez-Lazaro M, Calvo S, Soler RM, Galindo MF, Jordán J. Journal: Neurobiol Dis; 2006 Nov; 24(2):296-307. PubMed ID: 16978869. Abstract: Parkinson disease (PD) is the second-most common age-related neurodegenerative disease and is characterized by the selective destruction of dopaminergic neurons. Increasing evidence indicates that oxidative stress plays a crucial role in the pathogenesis of idiopathic PD. Anti-oxidant agents including catalase, manganese porphyrin and pyruvate confer cytoprotection to different cell cultures when challenged with 6-hydroxydopamine (6-OHDA). Herein we used rat cerebellar granular cell cultures to ascertain the plausible cellular pathways involved in pyruvate-induced cytoprotection against 0.1 mM 6-OHDA. Pyruvate provided cytoprotection in a concentration-dependent manner (2-10 mM). Consistent with its well-established anti-oxidant capacity, pyruvate (10 mM) prevented 6-OHDA-induced lipid peroxidation by blocking the rise in intracellular peroxides and maintaining the intracellular reduced glutathione (GSH) levels. Further experiments revealed that pyruvate increased Akt, but not extracellular signal-regulated kinase phosphorylation. Moreover, phosphatidylinositol 3-kinase (PI3K) inhibitors attenuated pyruvate-induced cytoprotection indicating that PI3K-mediated Akt activation is necessary for pyruvate to induce cytoprotection. On the other hand, pyruvate also up-regulated glutathione peroxidase mRNA levels, but not those of the anti-oxidant enzymes superoxide dismutase-1 and -2, catalase or the anti-apoptotic oncogenes Bcl-2 or Bcl-xL. In summary, our results strongly suggest that pyruvate, besides the anti-oxidant properties related to its structure, exerts cytoprotective actions by activating different anti-apoptotic routes that include gene regulation and Akt pathway activation.[Abstract] [Full Text] [Related] [New Search]