These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Narcolepsy and the hypocretins. Author: Wurtman RJ. Journal: Metabolism; 2006 Oct; 55(10 Suppl 2):S36-9. PubMed ID: 16979425. Abstract: Narcolepsy is a chronic neurologic disease characterized by excessive daytime sleepiness and one or more of three additional symptoms (cataplexy, or sudden loss of muscle tone; vivid hallucinations; and brief periods of total paralysis) related to the occurrence of rapid eye movement (REM) sleep at inappropriate times. The daytime sleepiness typically presents as a sudden overwhelming urge to sleep, followed by periods of sleep that last for seconds or minutes, or even longer. During daytime sleep episodes, patients may exhibit "automatic behavior," performing conventionalized functions (eg, taking notes), but not remembering having done so once they are awake. About 10% of narcoleptics are members of familial clusters; however, genetic factors alone are apparently insufficient to cause the disease, inasmuch as the most common genetic disorder, a mutation in chromosome 6 controlling the HLA antigen immune complex, although seen in 90% to 100% of patients, also occurs in as many as 50% of people without narcolepsy. A dog model of narcolepsy exhibits a mutation on chromosome 12 that disrupts the processing of the peptide neurotransmitter hypocretin. No such mutation characterizes human narcolepsy; however, cerebrospinal fluid (CSF) hypocretin levels are profoundly depressed in narcoleptic patients, and a specific reduction in hypocretin-containing neurons has been described. One hypothesis concerning the pathophysiology of narcolepsy proposes that the HLA subtype resulting from the mutation on chromosome 6 increases the susceptibility of hypocretin-containing brain neurons to immune attack. Because hypocretin may normally participate in the maintenance of wakefulness, the loss of neurons that release this peptide might allow REM sleep to occur at inappropriate times, ie, while the patient is awake, in contrast to its normal cyclic appearance after a period of slow-wave sleep. The cataplexy, hallucinations, and/or paralysis associated with REM episodes normally are unnoticed-or, at least, not remembered-when the transition to REM follows slow wave sleep, as is normally the case; however, they are remembered when, in people with narcolepsy, the REM episode starts during a period of wakefulness. The association of narcolepsy with a deficiency in a specific neurotransmitter, in this case, hypocretin, is reminiscent of the associations between Parkinson disease and dopamine, or early Alzheimer disease and acetylcholine.[Abstract] [Full Text] [Related] [New Search]